The Mechanism of Enzyme-inhibitor-substrate Reactions

نویسنده

  • Avram Goldstein
چکیده

The mechanism of enzyme-inhibitor-substrate reactions has been analyzed from a theoretical standpoint and illustrated by data from the system cholinesterase-physostigmine-acetylcholine. This treatment is by no means limited to a single system but should be generally applicable to others of similar type. Competitive enzyme-inhibitor-substrate systems show the same characteristic "zones of behavior" already demonstrated for non-competitive systems by Straus and Goldstein. These zones, three in number, determine the mathematical function which relates activity of an enzyme to concentration of an added substrate or inhibitor or both. The effects of suboptimal substrate concentration in such systems have been considered, and the errors arising from various common simplifications of the descriptive equations have been pointed out. The zone behavior phenomenon has been shown to be useful in determining the number of molecules of substrate or inhibitor combining reversibly with a single enzyme center. The kinetics of competitive inhibition, dilution effect, combination of inhibitor or substrate with enzyme, and destruction of inhibitor or substrate by enzyme have been analyzed and experimentally verified, and absolute velocity constants have been determined. Theoretical conclusions have been discussed from the standpoint of their physiological significance. Specifically, it has been shown that: 1. The inhibition of cholinesterase by physostigmine is competitive. A single molecule of physostigmine or acetylcholine combines with one center of cholinesterase-n = 1; and the mechanism n = 2 has been. excluded. Numerical values of the constants for this system are as follows: K(I) = 3.11 x 10(-8)k(1) (combination) = 8.3 x 10(5)k(2) (dissociation) = 0.026 K(S) = 1.25 x 10(-3)k(3) (combination) = 260 k(4) (dissociation) = 0.32 2. No definitive value can be assigned to E, the molar concentration of enzyme centers, but in 4.54 per cent dog serum, E < 1.8 x 10(-8) (E(I)' < 0.58). The system therefore operates in (or nearly in) zone A at this concentration. 3. Competitive displacement of inhibitor by substrate and vice versa introduces considerable error in the usual 20 minute determination of the activity of an inhibited enzyme, unless properly corrected for. 4. Dissociation of the enzyme-inhibitor complex on dilution proceeds moderately slowly so that the full corrections for dilution cannot be applied unless time has been allowed for full dissociation. 5. Combination of physostigmine with cholinesterase is slow at all but large concentrations of inhibitor. 6. The destruction of physostigmine or acetylcholine by cholinesterase follows the predicted curve; k(D) for the destruction of physostigmine is found to be > 0.00182; k(D) for acetylcholine destruction is > 3500. There is no reason to assume inhibition of destruction by excess substrate or inhibitor. 7. The common assumption that enzymatic activity follows (or nearly follows) a monomolecular course is true only under limited conditions, which have been here defined. It is not valid, as a rule, for the enzymatic destruction of an inhibitor (e.g., physostigmine) and its application to such a case may lead to erroneous conclusions about the reaction mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase

Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...

متن کامل

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

The Relationship between Cation-Induced Substrate Configuration and Enzymatic Activity of Phosphatidate Phosphohydrolase from Human Liver

The mechanism by which bi-and trivalent cations affect human liver phosphatidatephosphohydrolase (PAP) activity was investigated. Bivalent cations up to 1 mM increased PAP activity whereas at higher concentrations the activity of the enzyme decreased. The stimulatory concentration for trivalent cations such as Al3+ and Cr3+, however, was much lower being 2 m M and 1 m M, respectively. All catio...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

The Kinetics and Mechanisms of Substitution Reactions of Trans-[Co(en)2CNCl]+ in Binary Mixed Solvent

The kinetics and mechanisms of the substitution reactions of trans-[Co(en)2CNCl]+ with unidentate anions,  , CN¯, I¯,  , Br¯ and SCN¯ in 60% v/v DMF-H2O binary solvent at 40.0±0.2 °C were studied spectrophotometrically. An Id mechanism was assigned for the replacement of chlorine by , CN¯ and I¯, an Ia one for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1944